Laplace Decomposition Method for Solving Singular Initial Value Problems
نویسندگان
چکیده
In this paper, Laplace Decomposition Method (LDM) which is coupling of Laplace Transform (LT) and Adomian’s Decomposition Method (ADM) is employed to construct the exact solution of two mathematical problems which arises in diverse fields of physics. It has been observed that this proposed coupling is very efficient and reliable for the solution of the nonlinear problems. Numerical results and graphical representation represent the effectiveness and efficiency of the proposed modification.
منابع مشابه
Modified Laplace Decomposition Method for Singular IVPs in the second-Order Ordinary Differential Equations
In this paper, we use modified Laplace decomposition method to solving initial value problems (IVP) of the second order ordinary differential equations. Theproposed method can be applied to linear and nonlinearproblems
متن کاملSOLVING SINGULAR ODES IN UNBOUNDED DOMAINS WITH SINC-COLLOCATION METHOD
Spectral approximations for ODEs in unbounded domains have only received limited attention. In many applicable problems, singular initial value problems arise. In solving these problems, most of numerical methods have difficulties and often could not pass the singular point successfully. In this paper, we apply the sinc-collocation method for solving singular initial value problems. The ability...
متن کاملReproducing Kernel Hilbert Space(RKHS) method for solving singular perturbed initial value problem
In this paper, a numerical scheme for solving singular initial/boundary value problems presented.By applying the reproducing kernel Hilbert space method (RKHSM) for solving these problems,this method obtained to approximated solution. Numerical examples are given to demonstrate theaccuracy of the present method. The result obtained by the method and the exact solution are foundto be in good agr...
متن کاملSolving Some Initial-Boundary Value Problems Including Non-classical Cases of Heat Equation By Spectral and Countour Integral Methods
In this paper, we consider some initial-boundary value problems which contain one-dimensional heat equation in non-classical case. For this problem, we can not use the classical methods such as Fourier, Laplace transformation and Fourier-Birkhoff methods. Because the eigenvalues of their spectral problems are not strictly and they are repeated or we have no eigenvalue. The presentation of the s...
متن کاملDesingularized meshless method for solving Laplace equation with over-specified boundary conditions using regularization techniques
The desingularized meshless method (DMM) has been successfully used to solve boundary-value problems with specified boundary conditions (a direct problem) numerically. In this paper, the DMM is applied to deal with the problems with over-specified boundary conditions. The accompanied ill-posed problem in the inverse problem is remedied by using the Tikhonov regularization method and the truncat...
متن کامل